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Sect ion  I 

PREFACE 

I n   t h e   p o r t i o n  of the  report   which  fol lows,  w e  p r e s e n t   t h e   r e s u l t s  

o f   s tud ie s  of t h e  s ta t i s t ica l  s t r u c t u r e  of turbulence.  Such s t u d i e s  

performed  under t h i s   c o n t r a c t   h a v e   t h r e e  aims: 

T o  ga ther   empir ica l   ev idence  on t h e   p r o b a b i l i s t i c   a s p e c t s  of 

t u rbu lence   i n   o rde r   t o   p rov ide   mo t iva t ion  and i n s i g h t   f o r  

development of theore t ica l   models ;  

To compare t h e   s t a t i s t i c a l   s t r u c t u r e  of boundary  layer   turbulence 

a t  Cape  Kennedy with  that   measured  in   other   observat ional   programs;  

To a t t e m p t   t o   u s e   t h e   r e s u l t i n g   i n f o r m a t i o n   i n   t h e   c o n s t r u c t i o n  

of methods tha t   can   be   used   to   t ake   account  of t h e   e f f e c t s  of 

t u r b u l e n c e   i n   t h e   s t u d y  and  design  of  aerospace  vehicles.  

vii 



I. SIMULATION OF ATMOSPHERIC  TURBULENCE 
WITH  EMPIRICAL  ORTHOGONAL  FUNCTIONS 

John  A.  Dutton  and  Dennis  G.  Deaven 

1.1 Introduction 

Simulated  time  histories  of  turbulent  motion  are  required  in  a  variety 

of  engineering  applications,  and  their  use  appears  to  be  increasing  as  more 

sophisticated  design  studies  are  attempted. As one  example,  such  time 

histories  are  used  to  provide  a  simulated  environment  for  vehicle  simulators 

used  in  the  study  of  crew  response  to  turbulence. As another,  the  time 

histories  are  necessary  if  non-linear  effects  are  to be studied  by  analog 

or  digital  computation. 

Several  requirements  must  be  imposed  on  time  histories  in  such 

simulation  studies  if  the  effects  of  turbulence  are  to  be  determined 

accurately  and  in  a  useful  manner.  These  include: 

(1) It must  be  possible  to  assess  the  likelihood of occurrence  of 

any  time  history  used in  the  simulation so that  the  degree to 

which  results  are  representative  is  known. 

(2) The  individual  time  histories  must  have  the  sequential 

characteristics  of  actual  turbulence,  the  most  notable  being 

that  the  energy  spectrum  should be proportional  to  the -513 

power  of  the  wave-number  or  frequency  over  quite  a  wide  range. 

( 3 )  The  time  histories  should  exhibit  the  probabilistic  structure 

of  actual  turbulence,  modeling  correctly  the  observed  non- 

Gaussian  behavior  of  the  density  function  and  the  exceedance 

statistics. 

A  consequence  of  the  last  two  requirements is that  the  simulated  turbulence 

will  contain  the  element  of  surprise so prevalent  in  actual  turbulence. 
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Most  methods for simulating  turbulence now  in use  fail  to  satisfy 

all  three  criteria  (Dutton, 1968). The  use  of  observed  records will 

obviously  satisfy  the  last  two  requirements  but  it  appears  difficult  to 

satisfy  the  first.  We  present  here  an  initial  study  of  a  method  that 

offers  considerable  potential.  It  is  based  on  the  Loeve (1963) 

decomposition of turbulent  time  histories  using  the  empirical  orthogonal 

functions discussed-by Dutton (1969) in NASA CR-1410. 

- 1.2 Review  of  the  Method  of  Decomposition 

and  solving  the  integral  equation  defined  on  an  appropriate  domain 

for  the  eigenvalues,  An,  and  the  eigenfunctions, @n. The  eigenfunctions 

satisfy  the  orthonormality  condition 

and  we  have  an  expansion  for  each  function, u(t), in  the form 
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in which 

The  coefficients  are  also  orthogonal  across  the  ensemble  in  the 

sense  that 

and  thus  it  can be shown  that 

n= 1 

The  significant  fact  about  the  eigenfunctions  is  that  if we arrange 

them  in  order  of  decreasing x then  for  each  N,  the  expansion n' 

will  explain  more  of  the  variance  in  the  ensemble  than  would  be  explained 

by  any  other  set  of  functions  in  the  sense  that  the  error 

is  a  minimum. 

Thus  the  empirical  orthogonal  functions  provide  a  scheme  in  which  the 

characteristics  of  temporal  sequencing  common  to  the  ensemble  are  represented 
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by  the  eigenfunctions,  and  the  individual  variations  for  each  time  history 

are  represented  in  the  coefficients. 

The  simulation  method t o  be  studied  here  involves  the  following  steps: 

(1) Obtain a large  ensemble  of  time  histories  of  turbulence; 

(2) Find  the  eigenfunctions,  eigenvalues,  and  the  coefficients  of 

each  of  the  time  histories; 

(3) Determine  the  probabalistic  structure  of  the  coefficients; 

( 4 )  Obtain  simulated  time  histories  with  known  likelihood  of 

occurrence  (with  respect  to  the  original  ensemble)  by 

sampling  from  the  distribution  of  the  coeffieients. 

This  scheme  should  meet  all  three  criteria  stated  in  the  introduction; 

this  is a report  on a first  attempt  to  carry  out  the  program  represented  by 

the  four  steps  above to determine  whether  there  is  indeed a possibility  of 

success. 

1.3 Computational  Methods 

At the  time  the  previous  report  (Dutton, 1969) was  prepared,  we  were  not 

able  to  find  eigenfunctions  for  time  histories  because  of  computational 

restrictions  on  the  length  of  the  data  sample. 

In  practice, we have N gust  histories,  each  with  M  points.  The 

correlation  function  is  approximated  by  (we  now  use  averages  across  the 

finite  ensemble  to  replace  the  expectation, E) 

n=l 

and  this  is a  matrix  of  size M x M. If we  let D be  the N x M matrix  containing 

the  observed  data,  then  the  correlation  mstrix  is R = D D/N and  this  is  of T 
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order  M  x M. When  the  time  histories  contain  several  hundred  points  it 

becomes  uneconomical  to  find  the  eigenvalues  and  eigenvectors  for R by 

matrix  diagonalization. 

An  alternative  approach  has  been  suggested  by  Hirose  and  Kutzbach 

(1969). We  form  instead  the  matrix 

(1.11) S = D  D /N T 

which  is  of  order  N x N, and  thus,  in  our  case  with  turbulence,  very  much 

smaller  than R. Now  we  let L and V be  the  (diagonal)  eigenvalue  and  the 

eigenvector  matrices  associated  with S .  Then,  because  we  can  have  at  most 

d 

S S 

N  positive  eigenvalues, L = Lr.  The  transformation 
S 

(1.12) Vr = D Vs (Ls N) T -112 

gives  the  eigenvectors  for R. (For a  proof  see,  Law  and  Fariss, 1968.) 

Thus  the  diagonalization  necessary  to  find  the  eigenvectors  is  performed 

on  a  smaller  matrix, S ,  and  then  Vr  is  obtained  by  matrix  multiplication. 

In  this  study,  we  use  three  gust  time  histories  obtained  by  the 

National  Aeronautical  Establishment  of  Canada  (Mather, 1967); statistical 

characteristics  of  these  records  have  been  discussed  by  Dutton (1968) and 

Dutton,  Thompson,  and  Deaven (1969). Some 1024 points  from  each  component 

for  each  of  three  runs  were  selected  to  give  nine  time  histories. The 

1024 points  represent  a  total  distance  of 980 m; the  sampling  interval 

was 9.5 m. The  ensemble of nine  histories  was  normalized so that 

1 9 
(1.13) E {u(t.)} = - 1 un-(t.) = 0 

J 9 J 
(j = 1,2, ... M) 

n= 1 
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Thus  there  were  eight  non-zero  eigenvalues  and  eigenfunctions  possible 

representing  the  eight  linearly  indpendent  normalized  time  histories. 

1.4 Characteristics  of  the  Eigenfunctions 

” 
The  resulting  eigenfunctions  appear,  as  might  be  expected,  to  be  similar 

to  time  histories  of  turbulence  themselves.  The  function  associated  with  the 

larges  eigenvalue  explained 66 percent  of  the  variance  in  this  ensemble.  The 

eigenfunctions  are  shown  in  Figure 1.1. Two points  are  worth  noting  in  the 

figure.  The  high-frequency  content  appears  to  increase  with  the  order  of  the 

eigenvalue.  Moreover,  abrupt  changes  presumably  associated  with  surprise 

occur  in  the  higher  order  eigenfunctions;  note  particularly  those  in  the 

fourth,  fifth,  and  seventh  eigenfunctions. 

The  variance  spectra of the  eigenfunctions  were  computed  to  determine 

whether  the  second  criterion  would  be  satisifed.  The  spectra  shown  in 

Figure  1.2  reveal  the -513 slope  over  most  the  range  of  wave-numbers 

present,  with  some  loss  of  low-frequency  energy  in  the  spectra  of  the 

higher  order  functions. 

The  expansion  defined  by  Equation 1.4 shows  that  the  Fourier  transforms 

will  obey  the  relation 
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D I S T A N C E  

Figure 1.1 Normalized  eigenfunctions  computed  from NAE data.  The  eigenvalues  associated  with 
each  function  are shok on  the  right.  The  plot  spans 980 m of horizontal  distance. 
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Figure 1.2 Spectra of the  normalized  eigenfunctions shown in Figure 1.1. 
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and  thus,  taking  account  of  Equation 1.6, the  average  spectrum  becomes 

n=l  n=l 

where CP is  the  spectrum  of  the nth eigenfunction.  Thus  the  average  spectrum 

will  have  the  required -513 behavior. 
n 

1.5  Construction of Simulated  Gust  Histories 

The simulation  method  being  studied  here,  proposed  by  Dutton (1968), 

uses  these  eigenfunctions  to  construct  artificial  time  histories  simulating 

turbulence.  Suppose  that  in  addition  the  lack  of  correlation  expressed  by 

Equation  1.4,  the  coefficients  were  also  independent  in  the  sense  that  the 

probability  density  function  obeys  a  relation 

Then we could  form  the  distribution  function, 

(1.18) Fi (a) = I" Pi (5) de, (i = 1, . . ., N) 

in  which  the  subscript  denotes  the  function  associated  with  the  coefficients 

of ith  order,  and  then  use  a  random  number  generator  to  produce  variates 

from  a  Gaussian  population.  Let  r  be  such  a  number  and  let  the  Gaussian 

distribution  function b e  FG(r). Then  a  coefficient, a, with  a  cumulative 

probability  FG(r) is obtained  from  the  operation 
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(1.19) a ( r )  = Fi [ F G ( r ) l  -1 

which F i s  Fhe f u n c t i o n   i n v e r s e   t o  F t h a t  is i iy 
-I 

(1.20) Fi -1 
[Fi(a>l  = a 

A ske tch   o f   the   computa t iona l   p rocedure  i s  shown i n   F i g u r e  1.3. C l e a r l y  

a sample   o f   coef f ic ien ts  whose d is t r ibu t ion   approaches   the   observed   one  w i l l  

be  produced as i n c r e a s i n g l y   l a r g e  sample  a r e   o b t a i n e d   i n   t h i s  manner. 

If w e  l e t  r = ( r l ,  r2, . . ., r ) be  a vector  of  independent,   Gzussian N 

v a r i a b l e s ,  and i f   E q u a t i o n   1 . 1 7   h o l d s ,   t h e   p r o b a b i l i t y   o f   t h e   p a r t i c u l a r  

r e a l i z a t i o n  

(j = 1, . . ., M) 

obtained  f rom  the  s imulated  gust   prof i les   about   the  ensemble mean u ( t ) ,  can 

be   assessed   f rom  the   p robabi l i ty   dens i ty  

I n   t h e   f i n i t e  case represented  by  eigenvectors  obtained  from  Equation  1.10 

only N of t h e  M va lues  u ( t . )   a re   independent   o f   each   o ther   because   any  N 

va lues   i n   t he   s econd  term of Equation  1.22  could  be  used t o  s o l v e   f o r  N 

c o e f f i c i e n t s  a . To see why t h i s  i s  t r u e ,   n o t e   t h a t   t h e   i n i t i a l   d a t a   r e c o r d s  

conta in  N x M pieces   of   information.  The e igenfunct ions  are l inear   combinat ions 

of   these d a t a  and r ep resen t  N x M p ieces   o f   i n fo rma t ion   sub jec t   t o   t he  

or thonormali ty   condi t ion  (Equat ion  1 .3) .  Hence t h e r e  are N x N p i eces  of 

r J  

n 



I 

11 

/1 

/ 
/ 

/ 
/ FG 

F i g u r e   1 . 3   S k e t c h   i l l u s t r a t i n g   t h e   a l g o r i t h m  used to o b t a i n   v a l u e s  of t h e  
c o e f f i c i e n t s  by sampl ing   f rom  the i r   d i s t r ibu t ion .  
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information  in  the  eigenfunction  set  that  are  not  independent  and so the 

eigenfunctions  contain (N x M) - (N x N) independent.pieces  of  information. 
The  coefficients {a 1 are  another  set  of (N x N) pieces  of  information, 

and in  combination  with  the  eigenfunctions,  will  give  back  the  original 

data  set  with N x M pieces  of  information.  Of  course  Equation 1.6 shows 

that  the  coefficients  only  have  N x (N - 1) independent  pieces  of 
information,  the N final  independent  data  being  the  eigenvalues  themselves. 

n 

Thus  we  have  a  conditional  probability  problem.  First,  we  must 

determine  the  probability of encountering  the  ensemble  (or  covariance 

matrix)  with  which we began.  This  probability  can  presumably  be  estimated 

by  considering  the  ensemble  in  relation  to  the  total  collection of empirical 

data  about  turbulence.  Next  we  must  determine  the  probability  of  obtaining 

a  particular  function  by  sampling  in  this  ensemble,  a  probability  characterized 

by  the  Nth  order  joint  distribution 

in  which  u = u(ti). i 

With  equation  1.21 we find  that 

. dal, . . . , daN 

But  we  have  assumed  that  the  coefficients  are  independent  and  that  each  depends 

on r, so that 
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(1.25) Pu ( E I Y  . dSN = 

The Jacobian  determinant   contains   values   of   the   e igenfunct ions,   $ , ( t , ) ,   $ , ( t2) ,  

* 9 $2 ( t l >  9 $2(t2) 9 * ' 9 $N(tN) 

From Equation  1.25 w e  see t h a t   i f   d a i / d r i  is approximate ly   cons tan t   o r  a 

maximum near  r = 0,  then   t he  t i m e  h i s t o r i e s   w i t h   t h e   l a r g e s t   p r o b a b i l i t y  i 

within  the  ensemble will be   those   ob ta ined  when rl . . . =  r = O .  = '2 - - N 

Thus t h e  most l ike ly   func t ion   ob ta ined   by   sampl ing  is  t h e  one f o r  which 

al = a2 - . . . % = 0, and s o  the   mos t   l i ke ly   func t ion  u ( t )  i s  t h e  mean 

func t ion   G( t ) .  

- 
r 

A sample  of  nine  simulated t i m e  h i s t o r i e s  w a s  o b t a i n e d   i n   t h i s  manner, 

assuming tha t   Equa t ion  1 . 1 7  i s  t r u e .  The s imula ted   tu rbulence   records  are 

shown i n   F i g u r e  1 . 4 ;  t h e i r   s t a t i s t i c a l   c h a r a c t e r i s t i c s   i l l u s t r a t e d   i n  

F igure   1 .5 .  

The s imulated time h i s t o r i e s ,  as a group,   have  the  correct   behavior  

n e a r   t h e   o r i g i n  of t h e   p r o b a b i l i t y   d e n s i t y   f u n c t i o n ,   b u t  do no t   appea r   t o  

con ta in  as many v e r y   l a r g e   g u s t s   a s   t h e   o r i g i n a l   d a t a .  The exceedance 

s t a t i s t i c s  shown i n   F i g u r e  1 . 4  v e r i f y   t h i s   c o n c l u s i o n .  

The a p p a r e n t   f a i l u r e   t o   r e p r e s e n t   t h e   l a r g e   g u s t s   c o r r e c t l y  may very  

wel l  b e   d u e   t o  a dependence  between  the  coefficients  of  the  various  functions 

gn the  ensemble.  The n e x t   s t e p   i n   t h e   i n v e s t i g a t i o n  i s  to   pu r sue   t he   ques t ions  

a s soc ia t ed   w i th   t h i s   poss ib l e   dependence .  

The appearance of some degree of dependence  would  not  seriously  compromise 

the  method;   sampling  would  have  to   be  done  f rom  joint   d is t r tbut ions  ra ther  

than   ind iv idua l   ones .  On t h e   b a s i s  o f   t he   r e su l t s   p re sen ted   he re  it appears  



+4. 0 

-4. 0 

Figure 1 . 4  Simulated  turbulence  records  obtained as exp la ined   i n  the text   (Equat ion 1.21)  by 
combining  the mean func t ion   and   the   gus t   func t ion   cons t ruc ted   wi th   the  sampled 
c o e f f i c i e n t s .  The p lo t   spans  980 m of   hor izonta l   d i s tance .  
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Figure  1.5 S t a t i s t i ca l  charac te r iza t ion  of the  simulated  turbulence.  The p l o t t e d  numbers  (1-9) 
represent   the  values   found  for   the  nine  s imulated time h i s t o r i e s .  The absc issa  are 
s t anda rd ized   va r i ab le s .u i /mi   ( i=192 , . . . 99 ) .  The so l id   l ine   represents   the   Gauss ian  
case.   In   the  upper   r ight ,   the   dashed  l ine  represents   the case of independence  between 
t h e   v a r i a b l e  and i t s  der iva t ive .  On the  lower r igh t ,   the   coord ina te  i s  ln[N(ui)/N(o)l 
and the   absc issa  i s  (ui/Uui)2.  

r ul 
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that  the  method is  a  qualified  success,  and  that  further  investigation  and 

testing  are  merited. , 
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PREFACE 
to 

SECTIONS 11, 111, and IV 

A considerable  number  of  wind  statistics  at  the  Kennedy  tower can 

be  estimated  from  the  roughness  length  (see  chapter 3), and  the  winds 

and  temperatures  at 18 m  and  30  m  only. 

First,  the  winds  and  temperature  are  used  to  define  a  Richardson 

number  at 23 my from  which L follows  by  Businger's  hypothesis: 

Lo = 23 m/Ri 

Then  the  surface  stress  is  given  by 

& =  - kv18 
P - u*o - 1 8m 

Rn - - 
Z $ (z/Lo) 
0 

Standard  deviations  of  u  at 18 m  follow  by  multiplying  u*  by 2.3. The 

standard  deviation  of v is  obtained  by  multiplications  of  u*  by  a  quantity 

which  can be read  as  function  of z/L from  Figure 4.4.  

0 

0 

Standard  deviations  at  other  levels  are  obtained  by  subtracting  from 

the  standard  deviations  at 18 m  quantities  obtained  as  function  of V from 

Figures 4.9 and 4.10. 
18 

Dissipation  rates  at  various  levels  are  given  by: 

These  can  also  be  used  to  estimate  high-frequency  portions  of  the  u  and v 

spectra (up  to  about l/k = 32) by  applying 
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S(k) = a E 
2/3  k-5/3 

where a is  about 0.50 f o r  u and  0.65 f o r  v ,  i f  k is i n   r a d i a n s   p e r   u n i t  

l eng th .  

Coherences up t o  100 m he igh t  are obtained  from 

coh(n) = e -a & 
v 

where a is 19 f o r  u and 13 f o r   v .  Az is  t h e   h e i g h t   d i f f e r e n c e  and v is t h e  

mean wind i n  Az, which is s u f f i c i e n t l y   a c c u r a t e l y   g i v e n   ( f o r   t h i s   p u r p o s e )  

by 

v = V18(2/18) 0 .25  

Slopes are 2.0 f o r  v and   1 .0   for  u below 100 m and 1.0 and  0.3  above 100 m. 

Cospec t ra   and   quadra ture   spec t ra  are prescr ibed  by:  

cosp  (n) = JS, (n) S2 (n)coh  (n)  cos ~ 

21~nAzs 

V 
- 

and 

quad  (n) = JS, (n) S2 (n )coh(n )   s in  - 21~nAzs 

V 
- 

I n   g e n e r a l ,   w i n d s   a t   h i g h   l e v e l s  on the  tower  can  be  estimated  from 

B 
v = v  18 ("1 1 8 m  
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where f3 depends  on - ant 
under  study. 

z 
Z 
0 

d -. The optimum  relations L 
.5 :hip  for  Kennedy  is  now 

In order  to  obtain Ri = z/L for  some  of  the  computations  above,  winds 

at  two  levels  were  needed.  However, z/L can  be  estimated  from  a  bulk 

Richardson  number  at 18 m: 

y d - y  z 2 
B = g  

T V Z 1 8  

according  to  nomograms  prepared  by  Panofsky  and  Prasad  (1965).  The  usefulness 

of  this  nomogram  for  Kennedy  data is now  being  investigated,  and  empirical 

corrections  may  be  applied.  If  successful,  all  the  estimates  discussed  here 

can  be  made  from  wind  observations  at 18 m only. 

In  future  work,  the  various  statistics  will  be  related to  information 

available  on  weather  charts  and  atlases. 

REFERENCES 

Panofsky, H. A . ,  and B. A .  Prasad,  1965:  Similarity  theories  and  diffusion, 
Air  and  Water  Pollution, 9, 419-430. 



20 

If. ESTIMATION OF COHERENCE AND SLOPE 

H. A .  Panofsky  and B. R. Kermah 

2 .1  Introduction 

A general  system  describing  missile  response  to  atmospheric  forcing 

can  be  based  on  the  covariance  tensors  of  Cartesian  velocity  components. 

This  tensor,  for  a  scalar  component  for  a  time  lag t, and  positional 

separation Ax can  be  written i’ 

where s(n) is  geometric  mean  of  the  spectra  of  the  component  at  two  positions 

and  Sj  is  the  slope of the  maximum  correlation  with  distance h . The 

coherence,  coh? (n) , has  been  demonstrated  to  be  well  approximated  by 

exp  (-ai  Afi)  (Davenport , 1961) , where  Afi = ~ Axi which, if Taylor‘s  hypothesis 

is  satisfied,  is  the  ratio  of  the  displacement  to  the  wavelength. It will  be 

i 
i 

1 

V 
r 

the  purpose  of  this  section  to  demonstrate  some  new  estimates  for  parameters 

describing  the  coherence  and  slope  of  horizontal  wind  components,  both  under 

neutral  stratification,  and  tentatively  under  stable  and  unstable  stratification. 

2.2  Coherence 

A s  mentioned  previously,  the  coherence  has  been  shown  to be well 

represented  as 

where  Afj = - and i, j = 1,2,3  refer  to  longitudinal,  lateral  and  vertical 
V 
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wind  components. An excellent  survey  of  collated  results  from  numerous 

previous  experiments  as  well  as  that  at  Cape Kennedyis given  by  Pielk& (1969). 

Considering  for  the  moment  only  previous  results  of  Cape  Kennedy  data, 

Pielke  found  that,  under  neutral  stratification,  the  decay  constant  for 

longitudinal  components  for  vertical  separations a' 22 and  that  for  lateral 

components a2 18. Pielke's  results  were  based  on  a  subjective  best  fit 

curve  for  estimates of the  appropriate  decay  constant.  Since  previous 

computations  by  Shiotani  (1969)  and  Davenport  (1961)  had  arrived  at  estimates 

of a3 - 17 and  a3 - 13  a  more  objective  re-evaluation  of a' and  a2  including 

additional  data  was  undertaken. 

3 -  

3 -  

1 2 
3  3 

Accordingly,  a  computerized  analysis  was  devised  to  fit  a  negative 

exponential  by  non-linear  least  squares  regression  utilizing  the  Marquardt 

algorithm  (Marquardt,  1963).  Standard  convergence  criteria  were  used  as 

supplied  with  the  algorithm  program.  However  the F and  t-test  criteria 

needed  therein  were  relaxed  from  10%  to  25%  due to the  dispersion  of 

coherence  estimates  as  seen  in  sample  computer  plots. A range of Af from 

0 to  .12  was  selected so as  to  eliminate  high  frequency  noise  effects. 

Several  difficulties  arose  with  such  an  approach. 

The  first  problem  was  a  lack  of  convergence  in  about 10 to  15%  of  the 

computations  due  to  bad  data.  The  second  difficulty  arose  from  the  varying 

data  format  between  the  1967  and  1968  data.  The  latter  instead  of  having 

15  combinations  of  coherence  between  the  levels 18,  30, 60, 90, 120  and 

150  m  has  only  the  3  combinations  18-30,  60-90  and  120-150  m.  This  made 

inclusion  of  the  1968  results  with  the  1967  results  only  possible  on  a 

level  by  level  basis  instead  of  a  weighting  according  to  low  or  high  mean 

heights.  The  results  are  tabulated  in  Table 2.1. 
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TABLE  2.1 

Decay  Constants  for a' and a' f o r  Each  Run for Selected  Levels 3 3 

Longitudinal a 1 2 
3 3 Lateral a 

Run Ri23 18-30  60-90  120-150  18-30  60-90  120-150 

030 
067 
086 
091 
101 
121 
133 
138 
139 
141 
14 2 
143 
144 
149 
151 
155 
156 
162 
163 
165 
176 
182 
183 
189 
196 

299 
305 
308 
319 

-0.16 

-0.32 
-0.28 
-0.17 
-0.23 
-1.01 

-0.14 
-2.36 
-0.69 
-2.32 
0.08 
0.11 

0.14 
-0.60 
-9.75 
-0.31 
0.02 
-0.20 
-0.33 
-0.21 
-1.08 
-0.46 
-0.39 
-0.85 
-0.44 
-0.07 
-0.09 
-0.06 
-2.54 

21.4 
21.5 
16.8 
16.8 
13.6 
15.9 
17.0 
12.9 
19.0 
19.5 
21.6 
38.3 
11.4 
25.1 
13.6 
11.8 
20.0 

29.4 
23.2 
18.3 
12.1 
11.4 
24.9 
24.2 
17.8 
22.9 
18.9 
17.9 

22.6 
17.6 
35.1 
13.4 
12.9 
24.9 
18.2 

27.1 
30.2 
23.8 
35.2 
69.2 
18.1 

13.8 

42.1 
19.8 
14.0 
21.6 
30.5 
33.8 
26.1 
13.2 
18.4 
23.7 
11.7 

22.4 
20.8 
32.4 
10.9 
11.2 
10.2 
14.0 

17.2 
19 .o 
34.5 
73.2 
48.7 

40.1 
12.8 
81.8 

33.1 
20.4 
14.8 
13.2 
18.7 
25.3 
23.2 
18.2 
16.1 

12.6 

13.7 
11.4 
11.0 
12.6 
8.7 
23.0 
13.5 
9.8 

10.2 
14.0 
27.8 

14.3 
29.6 

9 .o 
17.1 

16.4 
9 .o 
12.8 
39.1 
14.4 

15.0 
13.8 
18.0 
9.9 
8.3 
8.4 
15 .O 

28.9 
28.4 
33.4 
11.7 
97.3 

28.2 

25.6 

13.4 
36.2 

17.5 
9.3 
17.0 
51.0 
18.4 

13.5 
13.1 
27.2 
7.4 
6.5 
18.0 
12.2 

38.0 
16.5 

33.8 
38.8 

29.3 
16.6 
36.2 

10.1 
15.2 

15.8 
9.7 
11.8 
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32 7 
351 
355 
359 
361 
364 
366 
367 
369 
377 
380 
389 
394 
415 
447 
477 
4 78 
480 
481 
515 
521 
526 
536 
546 
551 
555 
565 
567 
610 
6 14 
618 
619 

0.00 
-0.69 
-0.59 
-0.12 
-0.09 
-0.48 
-0.50 
-3.39 
0.07 
0.08 
0.01 
0.08 
0.03 
0.00 
0.05 
-0.12 
0.00 

0.00 

0.04 
-0.28 
-0.07 
-0.36 
0.10 
0.34 
-8.50 
-1.48 
0.00 

0.02 
-1.36 
0.07 
-0.33 

TABLE 2.1  (continued) 

Longitudinal a 1 2 
3 3 Lateral a 

~~ 

18-30  60-90  120-150  18-30  60-90  120-150 

15.4 
17.3 
19.3 
16.1 
22.7 
15.9 
14.6 
16.6 

15.1 
18.3 
22.0 
20.3 

14.5 
15.3 
18.1 
20.8 
19.4 
7.0 
17.4 
29 .O 
8.3 
8.4 
19.9 
16.7 
18.1 
20.4 
20.9 
19.3 

18.1 
18.0 
26.3 
34.9 
27.5 
21.3 
4.2 
9.1 

19.4 
18.1 
21.7 
16.1 

20.7 
12.0 
18.8 
25.1 
20.3 
20.1 
32.4 
33.5 
9.8 
12.6 

28.5 
14.6 
21.4 
19.3 
21.4 

15.7 
11.6 
15.0 
13.6 
15.5 
12.6 
6.7 
8.5 

19.5 

12.6 

18.3 
27.7 
31.4 
16.1 
20.3 
8.8 
29.0 

13.6 
8.5 
28.8 
28.2 
9.9 
11.9 
18.3 
20.6 

15.8 
16.2 
11.9 
14.0 
14.5 
15.3 
9.6 
12.2 
12.2 
10.7 
11.1 
15.4 
12.8 
12.7 
13.9 
10.4 
14.0 
12.5 
13.7 
11.1 
12.1 
5.6 
15.5 
21.5 
15.5 
8.1 
11.5 
20.3 
12.0 

25.6 
11.5 
12.2 

25.9 15.1 
21.4 17.8 
12.9 13.9 
9.9 11.7 
15.7 11.1 
14.5 9.2 
14.8 12.6 
7.6 6.2 

10.5 
30.5  13.4 
13.9 
11.3  6.1 
17.1  10.1 

17.2  10.4 
11.0  11.7 
17.5  9.8 
14.6  14.0 
14.7  22.1 
12.0  7.9 
19.9  17.9 
58.9  26 .O 
15.9  7.0 
5.9  54.2 
19.8  27.0 
20.8  22.1 
10.4 6.2 
17.1  12.6 
15.6  16.8 
13.4  14.1 
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TABLE 2.1 (continued) 

Longitudinal  a 1 2 
3 3 Lateral  a 

Run Ri23 18-30  60-90  120-150  18-30  60-90  120-150 

625 
627 
631 
633 
641 
648 

7.6  5.2  21.8  3.9 
21.8  27.9  17.2  16.8  19.7  15.4 
23.9  12.7  10.8  31.1  13.3  12.7 
18.1  16.8  31.6  18.9  9.8  9.7 
12.2  17.3  12.3  19.6  27.6  10.9 
13.9  21.1 11.0 11.3  7.5  15.6 
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After  a  cursory  examination  of  the  results no discernible relations 

could be found  between  the "a"  values  and  height.  Accordingly,  to  study 

the  effect of stratification  upon  the  a  it  was  decided  to  concentrate 

on the 18-30 level  pair  initially  where  the  Richardson  number was best 

determined. 

j' 

Figure  2.1  shows  the  estimates  arrived  at  by  the  least  squares  fit  of 

the  lateral  wind  component's  coherence  between  the  levels 18 and 30 my 

plotted as a  function  of  the  Richardson  number  based  on  Chaplin's 

(Blackadar,  et  al., 1969) work. The upper  curve  represents  Pielke's  fit 

to  the  Cape  Kennedy  data;  the  lower  curve,  Pielke's  fit  of  Shiotani's, 

Davenport's  and  other's  results.  The  box  represents  the  closure  of  the 

estimates  in  near-neutral  (-0.2 5 Ri f 0.2)  fit  whose  weighted  average 

(based on  the  number  of  coherence  estimates  for 0 f Af .12, for  each 

fit) is given  by  the  solid  straight  line  and  whose  weighted  average 

standard  deviation  is  denoted  by  the  dashed  straight  lines. As can be 

seen  the  revised  estimate  of a' = 13.22 k 1.18 is  in  excellent  agreement 

with  results  from  other  sites. 

3 

Figure 2.2 represents  the  analogous  analysis  for  the  longitudinal  wind 

components.  Again  the  upper  solid  curve  represents  Pielke's  fit  of  Cape 

Kennedy  data,  the  lower  solid  curve  other  workers'  results.  The  decay 

constant a' - 18.57 f 1.19 arrived  at  by an identical  averaging  procedure 
as  explained  for  the  lateral  component.  Again  the  averaged  neutral  value 

is  in  excellent  agreement  with  the  fit  of  results  from  sites  excluding 

Cape  Kennedy. 

3 

A hypothesis  was  tested  that  the  decay  constant  for  the  coherence 

representation  were  proportional  to  the  Monin-Obukhov  similarity  variable 
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(Monin,  1954) 0 defined as 

the  curves  13.224  and  18.574,  were  plotted  as  functions  of  the  18-30 m 

Richardson  number  (Businger,  1966)  in  Figures  2.1  and 2.2 respectively. 

a  values  and  4's  appear  to  behave  in  similar  ways.  To  test  the  Cape 11  II 

Kennedy  data  fit  explicitly,  Figure 2.5 is  a  plot  of  the  lateral  and 

longitudinal  decay  constants  vs  13.224  and  18.574  respectively. As 

can  be  seen  the  fit  is  not  good. 

The  averaging  technique  for  near-neutral  stratification  was  extended 

to  the  60-90 m and  120-150 m level  pairs  based  on a  linear  extrapolation 

of  Richardson  .number  with  height  based  on  the  Pandolfo  (1966)  hypothesis. 

Table 2.2 tabulates  the  results. 

Table  2.2 

Decay  factors  in  near-neutral  air  (-0.2 5 Ri 5 0.2) 

Level a (neutral) lon a (neutral) la t 

18-30 

60-90 

120-150 

18.6 

21.3 

20.9 

13.2 

16.3 

14.2 

Within  the  errors of measurement,  the  near-neutral  "a"  values  can  be 

considered  constant  with  height. 



2 . 3  Slopes 

The  slope Sj introduced in Equation 2.1 , can  be  defined  as i 

1 
sji = 2sBfi 

where  quad  and  cosp 

in his  thesis  found 
.l 

tan -1 quad  (Af i, 

cosp(Af ) i 

are  the  quadrature  and  cospectra  respectively.  Pielke 

that  the  vertical  slopes  for  lateral  and  longidudinal 

wind  components S and SI were 2.6 and 1.0 respectively.  To  strengthen  his 

conclusions  further  data  from  Cape  Kennedy  were  analyzed. 

L 
3 3 

S? was  fitted  as a linear  least  squares  approximation  to  the  slope of 

the  function  tan quad(Af vs.   IT Af S .  utilizing  the  normal  regression i j  

equations , i.  e. 

1 i 

cosp  (Af i, 1 

. N  quadm (Af i, -1 

m= 1 cospm (Af i, 
<s?> = c tan 
1 

N 

m=l 
2.rr c (d)m 

where N is  the  total  number  of  estimates of 0 5 Af 5 0.12. The  averaging  to 

evaluate <S?> was  carried  out  on a level to level  basis  as  well  as  on a high- 

low,  height  distinction  basis  and  an  overall  value  for  all  heights  for  the 

i 

1 

1967 data  and  on a level to level  basis  for  the 1968 data.  The  results  are 

tabulated  in  Table 2 . 3 .  

Figures 2 . 3  and 2 . 4  epresent  the  results  for  the 18-30 m level  combination 

graphically.  The  solid  curve  in  each  case  represents  Pielke's  original  fit  on 

the  basis  of  data  from  all  possible  sites. Box 

decay  constants,  gave  mean  values  under  neutral 

and S2 = 1.99. The  value S1 = 1 . 0 2  agrees  with 3 3 

averaging,  as  employed  with  the 

stratification  of s1 = 1.02 

the  previously  established 
3 
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TABLE  2.3 

Slopes  S1  and S2 for Each  Run for Selected Levels 3 3 

Longitudinal  Lateral 

Run Ri23 18-30  60-90  120-150  18-30  60-90  120-150 

030 
06 7 
086 
091 
101 
121 
133 
138 
139 
141 
142 
143 
144 
149 
151 
155 
156 
162 
163 
165 
176 
182 
183 
189 
196 
299 
305 
308 

-0.16 
-0.32 
-0.28 
-0.17 
-0.23 
-1.01 

-0.14 
-2.36 
-0.69 
-2.32 
0.08 
0.11 
0.14 

-0.60 

-9.75 
-0.31 
0.02 
-0.20 
-0.33 
-0.21 
-10.8 
-0.46 
-0.39 
-0.85 
-0.44 
-0.07 
-0.09 
-0.06 

0.86 
0.43 
0.65 
0.29 
1.04 
1.01 
0.37 
0.78 
1.43 
0.56 
1.12 
1.05 

0.50 
0.04 
0.82 
0.76 
1.18 

0.21 
0.58 
0.76 
0.67 
0.40 
0.90 
0.44 
0.64 
1.11 

0.95 

0.88 
0.12 
0.81 
0.64 
0.77 
0.62 
1.02 

0.13 
1.04 
1.27 
0.64 
0.39 
0.26 
2.97 
0.30 
1.94 

0.33 
0.00 

0.18 
0.62 
0.73 
0.88 
0.27 
0.52 
0.16 
0.73 

0.78 
0.17 

1.45 
0.18 
0.40 
0.11 

0.75 
0.39 
0.28 
0.27 
0.45 
1.00 

1.15 
0.32 
0.98 
1.27 
1.96 

0.22 
0.66 
0.82 
0.33 
0.30 
0.39 
0.61 
0.28 
0.23 
0.04 

1.75 
0.98 
1.63 
1.31 
1.03 
0.96 
1.35 
0.96 
2.79 
1.13 
1.87 
2.35 
2.44 

2.74 
0.57 
1.50 

1.50 
1.70 

2.08 
1.54 
1.85 
2.37 

2.31 
1.09 
2.83 
0.94 
0.73 
0.38 
1.12 

0.71 
1.09 
2.02 
1.34 
0.19 

1.93 
0.54 
1.57 

0.02 
1.64 

1.84 
1.05 
1.41 
4.74 

1.48 
0.58 
0.82 
0.95 
0.63 
0.94 
0.32 
0.15 
1.62 
1.36 
1.61 
0.21 
2.44 

0.47 
0.31 
0.56 

0.21 
0.16 

0.21 
0.84 
0.39 
1.83 



31 

TABLE 2.3  (continued) 

Run Ri23 

319  -2.54 

351 -0.69 
355  -0.59 

359  -0.12 
361 -0.09 

364  -0.48 
36 6 -0.50 

36 7 -3.39 
369  0.07 
380 0.01 

389  0.08 

394  0.03 
415 0.00 

447 0.05 

477 -0.12 
478 0.00 

480 0.00 
481  0.04 

515  -0.28 

521 -0.07 

526  -0.36 
5 36 0.10 

546 0.34 
551 -8.50 
555  -1.48 
565 0.00 

567  0.02 
610 -1.36 
6 14 0.07 

618 -0.33 
619 

LonRitudinal  Lateral 
18-30  60-90  120-150  18-30  60-90  120-150 

". .~ 

0.65 

0.05 
0.57 

0.49 
1.60 
0.13 

0.44 
0.34 
0.92 
0.74 
1.33 

1.04 

0.62 

1.14 

0.79 
1.46 
0.96 
0.45 

0.66 

0.43 
1.83 
1.60 
0.41 
0.64 

1.39 
0.21 
0.77 
0.83 

0.18 
1.40 

0.08 

0.25 
0.58 

0.55 
0.80 
0.04 

0.79 
0.81 

0.84 
0.25 
0.63 
1.02 

0.73 

0.02 

1.52 
0.76 

0.30 
0.02 

1.77 

0.38 
2.56 
0.58 

0.00 
0.49 
0.63 
1.95 
0.57 
1.15 

0.80 
1.70 

0.24 

0.31 
0.52 

0.18 
0.08 

0.03 
0.01 

1.36 

0.01 

1.07 

0.32 

1.07 

1.03 

0.96 
0.05 
0.24 

0.89 

1.14 
0.47 
0.34 
0.11 

0.24 
0.97 
1.34 
0.16 
0.50 

0.43 
0.80 

1.52 

1.41 
1.02 

1.85 
2.29 
1.47 
1.53 
0.28 

1.53 
1.81 
2.01 

1.94 

2.09 
1.24 
1.77 

2.11 

2.65 
1.82 
1.32 

2.06 

1.94 
2.25 
1.57 
1.20 
1.62 
1.99 
2.50 
1.37 
1.12 

1.60 
1.69 

1.16 

1.92 
0.35 

1.32 
1.52 

1.26 
1.17 

0.63 

1.28 
1.59 
2.06 
2.29 

1.73 
2.03 
0.74 

2.53 
2.23 

1.49 
1.34 

2.36 
1.30 

2.75 
3.39 
0.06 
0.59 

1.99 
2.97 
1.84 

1.31 

1.56 
1.35 

1.88 
1.08 
0.11 

0.84 
0.93 
1.21 
0.86 
1.24 

0.18 

1.70 

1.12 
1.07 

0.25 
1.78 

1.38 
0.82 
0.86 

0.94 

0.37 
0.03 
2.79 

0.27 
0.61 
0.92 
1.08 

0.92 
0.98 
1.10 

0.69 
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TABLE 2.3  (continued) 

Longitudinal  Lateral 

Run  Ri  18-30 60-90 120-150  18-30  60-90  120-150 23 

625 
627 
631 
633 
641 
648 

0.44 0.23 0.23 0.59 1.86 0.59 
1.54 1.98 0.67 1.96 1.85 1.01 
1.75 0.77 0.37 2.22 1.75 1.65 
1.09 0.90 0.97 2.25 1.59 1.51 
1.22 1.90 0.29 1.88 1.06 0.93 
0.60 0.16 1.24 1.10 0.95 0.07 
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value of unity.  However  the  value S2 - 2, although  speculated  by  Pielke, 3 

does  not  agree  well  with  the  results of all  other  studies. 

Again,  as  a  hypothesis,  the  slopes  were  considered  to  be  proportional 

to  the  Monin-Obukhov  similarity  variable 4. Intuitively,  slopes  should  be 

proportional.  to  wind  shear,  and 4 is  a  normalized  wind  shear.  Accordingly 

values  of 24 and 4 are  plotted  on  Figures  2.3  and  2.4.  The  correspondence 

in  each  case  is  displayed  graphically  in  Figure  2.6.  The  lateral  slopes 

seem  to  be  slightly  underestimated  while  the  longitudinal  slopes  fit  well. 

As  with  the  decay  constant  'a',  the  slopes  for  near  neutral  stratification 

were  averaged.  Here,  the  definition of near-neutral  was  revised  to 

-0.1 - < Ri - < 0.1. The  results  for  near  neutral  air  are  presented  in  Table  2.4. 

TABLE 2.4 

Slope  in  near-neutral  air (-0.1 5 Ri 5 0.1) 

Level  Slopelon  (neutral)  Slopelat  (neutral) 
. " ". ~ - . . .. ~ . ." - - ,~ 

18-30 1.02  1.99 

60-90 

120-150 

1.03 

0.76 

2.05 

1.00 

The  slopes  in  near-neutral  air  appear  to  be  constant  up  to  about 100 m 

and  show  a  major  decrease  above  this  height.  Therefore  the  hypothesis  that 

the  slopes  are  proportional  to  the  non-dimensional  wind  shear 4 cannot  be 

applied  above  about 100 m. This  follows  from  Pandolfo's  hypothesis  that 4 

in  neutral  air  would  be  unity  at  all  levels  but  the  results  show  the  slopes 

decreasing.  Accordingly  the  effects  of  decreasing  stress  and  Ekman  inertia 

must  be  included. 
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2 - 4 Conclusions 

The  re-evaluation  of  Cape  Kennedy  data in conjunction  with  previous 

results  strongly  suggest  constant  values  of  a3 - 19;  a3 - 13; slope' - 1 
and  slope3 - 2  in  neutral  stratification  below  about 100 m. 

1 2 
3 

2 

The  variation  of  slope  with  Richardson  number  Ri  is  proportional  to 

the  variation  of @. Also, the  dependence  of  "a"  is  of a  similar  general 
character. 

The  decay  constant  at  Kennedy  in  the  vertical  air  are  the  same  as 

those  elsewhere  in  neutral  air;  but  a  discrepancy  still  exists  in  unstable 

air,  where  coherence  at  Kennedy  is  less  than  elsewhere. 
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111. THE ESTIMATION OF TOTAL  DISSIPATION 

R. C.  Goff 

3 . 1  Formulation of estimate 

The  total  dissipation, E, is defined  by 

150 
E = 1 PE dz 

z 
0 

where p is  the  density  and E the  local  dissipation.  The  lower  limit z follows 
0 

from  the  convention  that  the  ground  is  defined  as z = z where  the  wind  speed 

vanishes. 

0, 

An attempt  was  made  to  derive  a  method  for  estimating  E  from  observations 

of temperature  and wind at  the  lowest  levels of the  tower only,  given  the 

roughness  length  from  a  prior  calibration  of  the  site. 

It  was  shown  earlier  (Blackadar,  et  al., 1969) that,  above z = 18 meters, 

the  dissipation  was  well  described  by: 

where u* is the  surface  friction  velocity  and  L  is  the  Lettau-Monin- 

Obukhov  length  obtained  from  observations  near  the  ground. 

0 0 

Below z = 18 meters,  the  expression  in  brackets  is  small so that  the 

fraction  of E below 18 meters  is 



Integration  of  Equation 3.2 from 18 meters  to 150 meters  shows  that  the 

fraction  of  E  above 18 meters  is  given  by: 

z had  been  previously 
0 

(1 - 18z/L )ll4 - 1 
(1 - 1 8 ~ / L ~ ) ~ / ~  + 1 

0 1 + 2 tan-' 

I 150 

(1 - l8z/LO) 
'I4 - LO '18 

estimated  as: 

(3.3) 

a)  0.159  m  for  dense  woods  (Zone 1) , 

b)  0.039  m  for  low  scrub  and  sand  (Zone 2), 

c)  0.121  m  for  low  trees  and  hummocks  (Zone 3). 

The  zones  above  are  defined  on  the  basis  of  the  azimuth  angle, 8, centered 

L was determined  by  first  obtaining  a  Richardson  number  at  23  meters  from 

the  wind  speeds  and  temperatures  at 18 meters  and  30  meters,  and  then  putting 
0 

z/Lo  Ri. 

u * ~  could  then be obtained  from: 

kv18 

0 
(3.4) 

3.2  Results 

Table  3.1  sives  the run numbers , and  the  "lower" ( z  < z 5 18 m) 
LO , 0 -  

and  "upper"  (18m 5 z 5 15Om)  portions  of  the  estimated E ,  as  well  as  the 

total E. Clearly,  the  contributions  of  these  portions  are of the  same 
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TABLE 3.1 

V e r t i c a l l y   i n t e g r a t e d   d i s s i p a t i o n  of t h e o r e t i c a l  
and  observed  methods  for   var ious  runs 

Lower Upper T o t a l  Lower 

Run 
LO ET ET ET EO 

013 

030 

067 

086 

091 

133 

141 

149 

16 2 

16 3 

165 

176 

182 

183 

189 

196 

299 

305 

308 

309 

310 

316 

319 

326 

335 

337 

351 

355 

359 

-575 

-144 

- 72 

- 82 

-136 

-165 

-10.0 

-38.5 

-115 

- 70 

-110 

-21.4 

- 50 

- 59 

-27.0 

- 52 

-344 

-253 

-377 

-38.5 

-140 

-3 .O 

-9.1 

- 7 1  

- 66 

- 55 

-33.5 

-39.2 

-188 

9.27 

3.72 

1.99 

0.40 

1 .51  

0.61 

0.24 

0.70 

0.47 

0.33 

1.08 

0.15 

0.60 

0.33 

0.95 

1.00 

1.81 

3.13 

8.88 

1.61 

8.55 

0.42 

0.57 

0.60 

0.48 

4.11 

2.07 

0.30 

5.67 

2.64 

1.16 

0.84 

0.21 

0.62 

0.22 

0.53 

0.57 

0.21 

0.17 

0.45 

0.20 

0.33 

0.16 

0.84 

0.52 

0.65 

0.88 

3.20 

1.38 

3.48 

3.04 

1.38 

0 .31  

0.21 

2.08 

1 .53  

0.19 

2.03 

11.90 

4.88 

2.83 

0.61 

2.13 

0.84 

0.77 

1.27 

0.68 

0.50 

1 .53  

0.35 

0.93 

0.48 

1 . 7 8  

1.52 

2.46 

4.01 

12 .01  

2.99 

12.03 

3.47 

1.94 

0.91 

0.70 

6.18 

3.60 

0.49 

7.70 

11.08 

4.10 

1 .68  

0.34 

2.64 

1.00 

0.56 

0.66 

0.68 

0.50 

1.28 

0.22 

0.98 

0.70 

0 .83  

1.36 

1.49 

1.95 

4.33 

2.23 

10.70 

0.99 

0.98 

0.77 

0.82 

3.44 

3.05 

0.47 

5.60 

1 .43  

0.81 

0.46 

0.29 

1.33 

0.30 

0.45 

0.28 

0.18 

0.54 

0.46 

0.15 

0.48 

0.76 

0.20 

0.44 

0.85 

1.16 

1.25 

1.54 

4.21 

0.71 

1 .41  

0.90 

0.65 

1.79 

1.04 

0.64 

2.03 

12.52 

4.91 

2.15 

0.63 

3.96 

1.30 

1 .01  

0.95 

0.86 

1.04 

1.74 

0.37 

1.45 

1.46 

1.03 

1.80 

2.35 

3.11 

5.58 

3.77 

14.92 

1.70 

2.39 

1.67 

1.47 

5.23 

4.09 

1.12 

7.63 



Run 

361 

364 
365 

366 

406 

477 

515 

521 

526 

529 

551 

554 

554 
610 

618 

LO 

L o w e r  

ET 

43 

TABLE 3.1 (continued) 

Upper T o  tal L o w e r  

ET  ET E 
0 

Upper Total 
E 

0 EO 

-251 

-484 

-9.8 

-46.5 

-42.3 

-20.0 

-81 

-316 

-65 
-284 

-2.7 

-14.1 

-15.6 

-16.9 

-71 

5.09 

1.15 

0.95 
1.17 

0.42 

1.23 

1.08 

2.12 

1.53 

1.10 

0.13 

0.28 

0.49 

0.52 

3.38 

1.75 

0.64 

2.64 

0.67 

0.26 

0.43 

0.43 

0.72 

0.90 

0.31 

1.01 

0.45 
0.71 

0.86 

1.45 

6.84 

1.78 

3.59 

1.84 

0.68 

1.66 

1.51 

2.84 

2.43 

1.40 

1.13 

0.73 

1.20 

1.37 

4.84 

4.15 

1.16 

0.95 
1.58 

0.52 

1.95 

1.88 

3.80 

3.72 

1.44 

0.28 

0.34 

0.62 

0.64 

3.02 

1.64 6.39 
0.62 1.78 

0.62 1.57 

1.27 2.85 

0.64 1.17 

0.60 2.55 
1.14 3.02 

1.24 5.04 

2.10 5.82 

0.68 2.12 

0.24 0.52 

0.31 0.65 

0.47 1.09 

0.39 1.03 

1.30 4.32 
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Figure 3 .1  
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Ratio  of   the   measured  total   d iss ipat ion  above 18 m t o   t h e  measured t o t a l   d i s s i p a t i o n  
below 18 m as a funct ion  of   the  gradient   Richardson n-mber. 
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Figure 3.2 Comparison of the  measured (E,) and  estimated (ET) vertically  integrated  dissipation 
in wattslm 2 at  and  below 18 m. 
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order  of  magnitude;  the  upper  portions  are  relatively  larger,  the  more 

unstable  the  air  (see  Fig. 3 .1 )  - 
The  estimates  of E  were compared  with  "observed" E. Below 18 meters, 

the  same  formula  was  used  as  that  for  the  estimated  values,  except  that 

"observed" z values  were  used  for  each  run.  At  and  above 18 meters,  values 

of local  dissipation  were  computed  from  the  high  frequency  portion  of  the 

spectra  of  the  longitudinal  wind  component 

0 

where b = 0.14 for  longitudinal  spectra  and 0.18 for  lateral  spectra  and k 

is  the  wave  number  in  radians  per  unit  length.  The  integral in Equation 4.1 

was  evaluated  by  the  trapezoidal  approximation  between  18  and 150 meters 

from  observations  at  six  levels. 

1 

Table 3 . 1  also  lists  observed  lower  and  upper  portions of E, as  well 

as  total E, and  Figure 3 . 2  compares  ''observed''  and  "estimated"  total  E. 

There  is a fair  amount of scatter  in  the.figure,  but  no  systematic 

difference  between  ordinate  and  abscissa. 
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IV. ESTIMATION OF VARIANCES 

H. A. Panofsky  and V. Mirabella 

4.1 Variances  at 18 meters 

According  to  Monin-Obukhov  similarity  theory,  the  standard  deviations 

of  longitudinal  and  lateral  wind  components  are  given  by: 

(5 U = 9, (z/L)u*  (4.1) 

Here  u*  is  the  friction  velocity  and 4 and $I are  universal  functions  of 
U V 

z/L  where  L  is  the  Lettau-Monin-Obukhov  length.  Whereas  it  is  generally  agreed 

that  expressions  of  the  form  of  Equations  4.1  and 4.2 fit  statistics  of  the 

vertical  velocity  quite  well,  there  is  considerable  doubt  about  the  adequacy 

of  the  equations  for (5 and (5 . Nevertheless,  these  equations  will  be  used 

in  an  attempt  to  understand  these  variables. 
U V 

First, u* was  estimated  from  the  wind  equation: 

where 7 is  the  mean  wind  at a  low  level  (here  taken  to  be 18 m> , z is  the 

roughness  length, $(Ri) is a  universal  function  well  known  in  unstable  air 

and k is  the  von  Karman's  constant  which is usually  taken  as 0.4. 

0 

Ri  was  estimated  from  the  temperatures  and  wind  at 18 m and 30  m (so 

that  it  applies  at  23 m), and  then  multiplied  by  18/23  to  yield a  value  at 

18 meters  according  to  Businger's  hypothesis.  The  roughness  lengths  used 

were  those  computed  from  observed  spectra  at  high  frequencies, as  suggested 

by  Panofsky  (1969). 
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Figures   4 .1   and  4.2 show t h e   r e l a t i o n s   b e t w e e n   t h e   s t a n d a r d   d e v i a t i o n s  

a n d   t h e   f r i c t i o n   v e l o c i t y  a t  18 meters. S t r a i g h t   l i n e s   w i t h   s l o p e s   o f  2 . 3  

f i t   t h e   d a t a   r e a s o n a b l y  well ,  with  s tandard  deviat ions  of   .19  and .29 f o r  

t he   l ong i tud ina l   and   l a t e ra l   ve loc i ty   componen t s ,   r e spec t ive ly .   These   l i nes  

were f i t t e d  by l eas t   squa res   and   fo rced   t o   pas s   t h rough   t he   o r ig in .  A s  can 

be   seen   f rom  the   g raphs ,   the   sca t te r  i s  g r e a t e r   f o r   t h e   l a t e r a l  component 

t h a n   t h e   l o n g i t u d i n a l  component .   This   can   be   par t ia l ly   expla ined   by   the  

f a c t   t h a t   t h e   r a t i o  (5 /u, is r e l a t i v e l y   i n s e n s i t i v e   t o   c h a n g e s   i n  

s t a b i l i t y   a s  is  shown i n   F i g u r e s  4 . 3  and 4.4.  

U 

I n   t h e   e s t i m a t e s  of var iance   descr ibed  s o  f a r ,  i t  w a s  assumed t h a t  

separa te   roughness   l engths   could   be   ob ta ined   for   each   run   f rom  observed  

s p e c t r a  a t  a l l  t ower   l eve l s .   I n  many p r a c t i c a l   s i t u a t i o n s ,   t h e  s i te  w i l l  

have   been   "ca l ibra ted"   p rev ious ly  s o  that   roughnesses   can  be  preassigned,  

o f t en   va ry ing   w i th  wind d i r e c t i o n .  I n  t h e  case of t h e  Kennedy tower ,   t he  

values   of  z adap ted   on   t he   bas i s   o f   p r io r  work are g i v e n   i n   t h e  a r t ic le  

by   Panofsky   (1969)   and   s ince   s l igh t ly   modi f ied .   Revised   f r ic t ion   ve loc i t ies  

were calculated  based  on  these  roughness   lengths .  

0 

Figures   4 .5  and 4 .6  show oU and (5 as func t ions  of these   es t imates   o f  

u*. The s l o p e   i n   t h e  case of uu i s  about  2.24  and  the scatter i s  s l i g h t l y  

less t h a n   i n   F i g u r e   4 . 1 .   T h i s   s u g g e s t s   t h a t   t h e   a v e r a g e   v a l u e s   o f  z i n  

t h e   v a r i o u s   s e c t o r s  are more n e a r l y   c o r r e c t   ( l e s s   i n f l u e n c e d   b y  random 

V 

0 

e r r o r )   t h a n   t h e  z ' s  obse rved   s epa ra t e ly   fo r   eve ry   run .   F igu re  4.5 

i t s e l f   l e a d s   t o  a good e s t ima te  of oU a t  18 meters given u* from  Equation 

4 .3 .  The s l o p e   f o r  oV i s  about   2 .27  and  the  scat ter  is  a l s o   s l i g h t l y  less 

than   t ha t   o f   F igu re   4 .2 .  

0 

Figures  4.7 and  4.3 show t h e   v a r i a t i o n s  of (0 / u * ) ~ ~  and (0v/u*)18 as 

a func t ion   of   the   Richardson  Number a t  18 meters using  the  zone z ' s .  The 

U 

0 
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Figure 4.1 Variance of the  longitudinal  wind  components at 18 m as  function  of  friction  velocity . 
at 18 m utilizing a roughness  length  determined  for  each  run  separately. 
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Figure 4.2  Variance of the  lateral wind components at 18 m as  a  function 
of friction  velocity at 18 m utilizing a  roughness  length 
determined for each  run separately. 
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Figure 4 . 3  Ratio of the variance of longitudinal  wind  components  to  friction  velocity  at 18 m 
as a  function  of  the  Richardson  number at 18 m  utilizing  a  roughness  length  determined 
for  each  run  separately. 
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Figure 4.4 Ratio  of  the  variance of lateral  wind  components  to  friction  velocity at 18 m as  a 
function  of  the  Richardson  number at 18 m utilizing a roughness  length  determined 
for  each  run  separately. 
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Figure 4.5 Variance of the  longitudinal  wind  components at 18  m  as a function 
of friction  velocity at 18  m utilizing  a  roughness  length  determined 
from average upwind zone  conditions. 
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Figure 4.6  Variance of the lateral wind components at 18 m as a function of 
friction  velocity at 18 m  utilizing a roughness length determined 
from averaged upwind zone  conditions. 
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Figure 4.7 Ratio of the  variance of longitudinal  wind  components to the  friction  velocity at 
18 m as a function of-the Richardson  number at 18 m utilizing a roughness  length 
determined  from  averaged  upwind  zone  conditions. 
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Figure 4.8 Ratio  of  the  variance of the lateral  wind  components  to  the  friction  velocity  at 18 m 
as a function of the  Richardson number at 18 m utilizing a roughness  length  determined 
from  averaged  upwind  zone  conditions. 
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scatter  of  the  points  about  the  line  for  Ou/u* in Figure 4.7 is essentially 

independent  of  Richardson  Number,  showing  that ou can be taken as a  constant 

at 18 meters  within  the  experimental  error. A s  was  the  case  for  Figure  4.4, 

the  ratio u /u* as computed  with  the  sector z ' s  is  correlated  with Ri as shown 

in Figure 4.8.  This  type  of  relation  would  also  be  expected  from  Prasad's 

summary (1967). In other  words @ varies  with Ri from  about 2 . 3  in neutral 

air  to  about 3.0 in very  unstable  air. 

V 0 

V 

Presumably,  optimum  estimates  of 0 at 18 meters  would  be  obtained  by 
V 

computing u* from  Equation 4.3 and  then  multiplying  by 0 /u*  given  by 

Figure  4.5.  Still  the  statistical  error  would be large. 
V 

4.2 Change  of  variances  with  height 

Let 

U - - 
u150 '150 u*150 

and 

0 -  
u18 - '18 U*18 

(4.4) 

(4.5) 

where 4 and @18 are  constants,  and  the  subscripts  refer  to  height  in  meters. 

Subtracting  Equation 4.4 from  Equation  4.5,  we  find 
150 

a,* 
az - where f3 = - - 

Given  an  estimate o'f 0 from  Figure  4.5 we can  estimate 0 from 
U 18 u150 

Equation  4.6  if we know  its  right  hand si'de. The  quantity f3 follows  from 

the  equations  of  motion  (neglecting  accelerations) 

I II 
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Here,  f  is  the  Corioli .s parameter  and V the  component  of  the  geostrophic 
g 

wind  at  right  angles  to  the  surface wind. The ratio V /u* is theoretically 

a  constant in neutral  air  and  has  been  recently  been  found  to be the  same 

constant  in  unstable  air as  well (Sheppard,  to be published, 1970). Thus, 

g 

the  last  term  in  Equation 4.6 can  be  taken  as  constant  at  a  given  latitude 

in  neutral  and  unstable  air. 

If $18 - $150’ - - should  be  independent  of  wind  speed.  To 
u18 u150 

test  this  hypothesis,  Figure 4 . 9  gives  the  relation  between 0 - and 
u18 150 U 

the  wind  at 18 meters.  Apparently,  there  is  quite  a  strong  relationship. 

Hence $ = $150. However,  Figure 4.9 can be used  to  estimate u - u 

given V 18. Once  this  difference  is  given, u at  other  levels  can  also  be 

determined  since  the  distribution  of u with  height  is  approximately  linear. 

18 u18 150 U 

U 

U 

Actually,  there  is  reason  to  doubt  that  the  relation  between  u*  and u 
U 

should  be  different  at  different  levels.  If  the  relation  is  general,  the 

observations  here  could  be  explained  if  the  values  of u at 150 m  had  been 

underestimated  by  perhaps  lo%,  possibly  because low frequencies  which  had 

U 

been  filtered  out  in  the  analysis  procedure,  contributed  more  to u than 
u150 

to OU 
18. 
An analogous  procedure is performed  for  the  change  of 0 with  height 

V 

and  Figure 4.10 is a  plot  of 0 - 0 as a  function  of  the  wind  at 18 
18 v15 0 V 

meters.  The  scatter  is  quite  large  probably  due to the  fact  that  the 

terms  depend  upon  stability. 
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Figure 4.9 Difference of the  variances of the longitudinal wind component 
at 18 m and 150 m  as  a  function of the mean wind at 18 m. 
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Figure 4.10 Difference of the variances of the lateral wind component at 18 m 
and 150 m as a  function  of the mean wind at 18 m. I 
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